
MODELLING AND VERIFYING DISTRIBUTED
APPLICATIONS WITH CONCUERROR

Stavros Aronis (@Vahnatai)

#CodeBEAMSF

THIS TALK
➤ Concurrency errors in Erlang

➤ Concuerror Basics

➤ Concuerror vs Distributed Applications

➤ vnet: a new modelling library

➤ Highlights

➤ Design

➤ Implementation

➤ Experiences

#CodeBEAMSF

CONCURRENCY ERRORS

#CodeBEAMSF

CONCURRENCY ERRORS
➤ Scheduling dependent

➤ = not triggered in every execution

➤ Examples:

➤ Bad synchronisation 
(e.g., “use before initialisation”)

➤ Atomicity violations (e.g., x = x + 1)

➤ Deadlocks

#CodeBEAMSF

CONCURRENCY ERRORS IN ERLANG
➤ “Shared nothing” helps a lot

➤ However, sharing (must) exist:

➤ Message passing (i.e., mailboxes)

➤ Unexpected orderings

➤ Unexpected timeouts

➤ Global data (e.g., registry)

➤ ETS tables

➤ …

#CodeBEAMSF

EXAMPLE
Child =
 spawn(
 fun() ->
 receive
 ok -> ok
 after
 100 -> timeout
 end
 end),
register(child, Child),
catch child ! ok.

#CodeBEAMSF

EXAMPLE
Child =
 spawn(
 fun() ->
 receive
 ok -> ok
 after
 100 -> timeout
 end
 end),

timer:sleep(200),

register(child, Child),
catch child ! ok.

#CodeBEAMSF

First attempt at async programming. - @jonathansampson (14 Dec 2015)
https://twitter.com/jonathansampson/status/676487374495342592

https://twitter.com/jonathansampson/status/676487374495342592

#CodeBEAMSF

DEALING WITH CONCURRENCY ERRORS
➤ Let it crash?

➤ Debug “Heisenbugs”?

➤ Think hard?

➤ Try mathematical verification?

➤ Try “stress testing”?

➤ Try randomised testing?

➤ … how to ensure no errors remain?

#CodeBEAMSF

SYSTEMATIC CONCURRENCY TESTING
➤ Explore all possible schedulings

➤ Systematically

➤ No errors found = None existing

#CodeBEAMSF

SYSTEMATIC CONCURRENCY TESTING
➤ Using a single ‘scheduler’

➤ Execute an arbitrary (finite) scheduling

➤ Check for errors

➤ Backtrack to latest “scheduling choice”

➤ Pick a different scheduling

➤ Repeat until:

➤ an error is found OR

➤ all choices have been explored

#CodeBEAMSF

HTTPS://CONCUERROR.COM

#CodeBEAMSF

CONCUERROR
➤ is a tool for systematic concurrency

testing

➤ is open source

➤ runs tests under all possible schedulings

➤ … “intelligently”

➤ detects ‘abnormal’ process exits and
deadlocks

➤ … provides a corresponding trace
HTTPS://CONCUERROR.COM

#CodeBEAMSF

EXAMPLE / DEMO
Child =
 spawn(
 fun() ->
 receive
 ok -> ok
 after
 100 -> timeout
 end
 end),
register(child, Child),
catch child ! ok.

#CodeBEAMSF

CONCUERROR VS OTP
...
handle_call(stop, State) ->
 {stop, normal, ok, State).
...
—————————————————————————————

gen_server:call(server,
stop),

gen_server:start({local,
server}, ...)

… gen_server:stop/1 added in OTP 18

#CodeBEAMSF

CONCUERROR VS OTP (ROUND 2)

… warning added in OTP 21.2 (Dec 12th, 2018)  
http://erlang.org/doc/man/supervisor.html

http://erlang.org/doc/man/supervisor.html

#CodeBEAMSF

THE CASE OF KRED/KDB
➤ OTP will (anyway) get you (really) far!

➤ However, sometimes you have 
more complex problems to solve

#CodeBEAMSF

DISTRIBUTED APPLICATIONS

#CodeBEAMSF

THE CASE OF KRED/KDB
➤ Distributed system

➤ Built in-house

➤ Handling transactions

➤ Leader/follower-based replication

#CodeBEAMSF

THE CASE OF KRED/KDB
➤ Concurrency errors related to

distribution

➤ Review / redesign

➤ Work by Viktória Fördős and 
Dániel Szoboszlay

➤ Prototype new ideas

➤ Engineers could prove correctness…

➤ … or have some fun instead!

#CodeBEAMSF

DISTRIBUTED APPLICATIONS
➤ Erlang’s built-in ops are “transparent”

➤ Message passing behaves similarly

➤ Processes behave similarly

➤ Registry not straightforward due to
name clashes

➤ Additional sources of errors:

➤ Node crashing

➤ Node disconnects

#CodeBEAMSF

LET’S
CONCUERROR?

Unfortunately not…

#CodeBEAMSF

CONCUERROR VS DISTRIBUTED APPLICATIONS

➤ (Currently) supports ONLY single-node

➤ Extending Concuerror is difficult

➤ Tricky to use on “production” code

➤ Lets try something different…

#CodeBEAMSF

HTTPS://GITHUB.COM/KLARNA/
VNET

#CodeBEAMSF

VNET: HIGHLIGHTS
➤ Is a modelling library

➤ Is open source

➤ https://github.com/klarna/vnet

➤ Was presented in Erlang Workshop 2018

➤ https://concuerror.com/publications

https://github.com/klarna/vnet
https://concuerror.com/publications

#CodeBEAMSF

VNET: HIGHLIGHTS (MORE)
➤ Enables testing/verification of distributed

applications with single-node tools

➤ Can simulate node crashes and
disconnections

➤ Is compatible with OTP behaviours

➤ Most Erlang built-in ops work “as is”

➤ Registry via… {via, vnet, Name}

#CodeBEAMSF

VNET: DESIGN

#CodeBEAMSF

VNET: DESIGN

#CodeBEAMSF

VNET: DESIGN

#CodeBEAMSF

VNET: DESIGN
➤ Allows use of OTP behaviours

➤ Allows controlling connections

➤ Handles registry name clashes

#CodeBEAMSF

VNET: IMPLEMENTATION
1. Custom name registry

2. vnode processes

3. connection processes

4. proxy processes

#CodeBEAMSF

VNET: CUSTOM NAME REGISTRY
➤ Supporting the “via” mechanism

➤ <name> becomes <name>@<vnode>

➤ vnet:tab/2 for ETS table names

#CodeBEAMSF

VNET: VNODE PROCESSES
➤ Group leader of processes in a node

➤ Inherited on spawn

➤ Marks processes belonging to node

➤ Kill “node’s” processes if node goes down

#CodeBEAMSF

VNET: CONNECTION PROCESSES
➤ One per connected node pair

➤ Control connect/disconnect scenarios

➤ Responsible for proxy processes

#CodeBEAMSF

VNET: PROXY PROCESSES
➤ … where all the magic happens!

➤ One per process, connection & direction

➤ On demand!

➤ Each proxy process:

➤ … proxies a process with regard to a
connected node

➤ Acts as target of remote links,
monitors & messages

➤ Inspects/rewrites messages perhaps
replacing PIDs with suitable proxies

#CodeBEAMSF

VNET: EXAMPLE

#CodeBEAMSF

VNET: EXAMPLE

monitor

#CodeBEAMSF

VNET: EXAMPLE

#CodeBEAMSF

VNET: EXAMPLE

“call” message

#CodeBEAMSF

VNET: EXAMPLE

#CodeBEAMSF

VNET: EXAMPLE

“call” message

#CodeBEAMSF

VNET: EXAMPLE

#CodeBEAMSF

VNET: EXAMPLE

“reply” message

#CodeBEAMSF

VNET: EXAMPLE

#CodeBEAMSF

VNET: EXAMPLE

“reply” message

#CodeBEAMSF

VNET: EXAMPLE

#CodeBEAMSF

VNET: LIMITATIONS
➤ Models/simulations are usually not ideal

➤ E.g. “Responses” can arrive out-of-order
with monitor signals

➤ Explained in detail in the paper

#CodeBEAMSF

VNET: EXPERIENCES
➤ KRED/KDB model (not public)

➤ Simple distributed system

➤ Counter server (node A)

➤ Supervised gen_server

➤ Counter’s value survives restarts

➤ ‘Good client’ (node B)

➤ ‘Bad client’ (node C)

#CodeBEAMSF

VNET: SIMPLE DISTRIBUTED SYSTEM

#CodeBEAMSF

VNET: EXPERIENCES
➤ Concuerror has a steep learning curve

➤ Start simple!

➤ Inspect detected races

➤ Ask me for help!

#CodeBEAMSF

WRAPPING UP!

#CodeBEAMSF

CONCUERROR
➤ Makes you understand concurrency

➤ Is very effective on models & prototypes

➤ Can verify safety of test scenarios

➤ Catches design flaws early

HTTPS://CONCUERROR.COM

#CodeBEAMSF

VNET
➤ Enables modelling distributed systems on

a single Erlang node

➤ Works out-of-the-box with OTP

➤ Try it out!

➤ https://github.com/klarna/vnet

➤ See the test/counter_server_example

➤ Read the paper!

➤ https://concuerror.com/publications

https://github.com/klarna/vnet
https://concuerror.com/publications

#CodeBEAMSF

PLAY WITH CONCUERROR & VNET!
➤ Race conditions are tricky!

➤ Modelling is fun!

➤ Prototypes are useful!

➤ Concurrency testing is easy!

➤ Verification is possible!

Thank you!

